Sections 4.1-4.3: The vector spaces $R \wedge 3, R \wedge n$, abstract vector spaces, subspaces, bases,...
In section 4.1 we learn, for $R \wedge 3$:

- what is $R \wedge 3$?
- the arithmetic of vectors
- the axioms for a vector space
- linear dependence and independence
- what is a basis? (A more usual definition is given in 4.4.)
- Subspaces: a criterion for a subset to be a subspace
- the term 'linear combination' is used on p. 218 and there are questions about linear combinations.
- Theorem: 3 vectors in $R \wedge 3$ are independent $<=>$ the matrix they form has $\operatorname{det} \neq 0$, and then they are a basis.

Most questions are about linear combinations, dependence and independence.

In section 4.2 we learn, for $\mathrm{R} \wedge \mathrm{n}$:

- exactly the same thing.
- In addition, there is a theorem that solutions to a homogeneous system of equations form a subspace.

Most questions are about identifying subspaces and finding bases for solution spaces.

In section 4.3 we learn

- official definition of linear combination
- more emphasis on independent sets of vectors
- spanning sets of vectors
- Theorem: n vectors in $\mathrm{R} \wedge \mathrm{n}$ are independent $<=>$ the matrix they form has $\operatorname{det} \neq 0$, and then they are a basis.

What are $R \wedge 3$ and $R \wedge n$?
\mathbb{R}^{3} is the set of triples of real (number 1, Re $\left[\begin{array}{c}1 \\ -3 \\ 27\end{array}\right]$
The arithmetic of vectors like

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{c}
-1 \\
4
\end{array}\right]=\left[\begin{array}{l}
0 \\
6
\end{array}\right]
$$

What is a linear combination of vectors?
It is an expression like

$$
\begin{aligned}
& \text { It is an expression like } \\
& 2\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]-5\left[\begin{array}{c}
0 \\
-1 \\
4
\end{array}\right]+7\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+0\left[\begin{array}{c}
1 \\
4 \\
-1
\end{array}\right]
\end{aligned}
$$

Like 4.1 questions 9-14, 25-28 and also 4.3 questions 9-16:
Express the vector t as a linear combination of ($1,0,-1$) and ($1,2,-2$) or else show that it cannot be done

$$
t=(1,4,-3), \quad t=(1,6,-3)
$$

Solution we ky to wite

$$
x\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+y\left[\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right]=\left[\begin{array}{c}
1 \\
4 \\
-3
\end{array}\right]
$$

We solve $\left[\begin{array}{cc}1 & 1 \\ 0 & 2 \\ -1 & -2\end{array}\right]\left[\begin{array}{l}x \\ y \\ y\end{array}\right]=\left[\begin{array}{c}1 \\ 4 \\ -3\end{array}\right]$. Elimination:

$$
\left.\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 2 & 46 \\
-1 & -2
\end{array}\right]-3-3\right] \rightarrow(3)+(1)\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 2 & 4 & 6 \\
0 & -1 & -2 & -2
\end{array}\right]
$$

$\xrightarrow{(3) \rightarrow(3)}+\frac{1}{2}(2)\left[\begin{array}{ll:ll}1 & 1 & 1 & 1 \\ 0 & 2 & 4 & 6 \\ 0 & 0 & 0 & 1\end{array}\right] \quad$ No solution.

$$
2 y=4 \quad y=2, x+y=1, x=-1
$$

$$
\left[\begin{array}{c}
1 \\
4 \\
-3
\end{array}\right]=-\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+2\left[\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right]
$$

It is not possible townite $\left[\begin{array}{c}1 \\ -3\end{array}\right] \begin{aligned} & \text { as a } \\ & \text { linear } \\ & \text { comb }\end{aligned}$

Pre-class Warm-up!!!
Is it possible to express the vector $(2,6)$ as a linear combination of the vectors $(1,3)$ and $(2,5)$?
a. Yes $\sqrt{2}\left[\begin{array}{l}2 \\ 6\end{array}\right]=2\left[\begin{array}{l}1 \\ 3\end{array}\right]+O\left[\begin{array}{l}2 \\ 5\end{array}\right]$
b. No

Another question:
Is it possible to express the vector $(2,5)$ as a linear combination of the vectors $(1,3)$ and $(2,6)$?
a. Yes
b. No \checkmark Quick approach:

Any linear ids. \&f $\left[\begin{array}{l}1 \\ 3\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 6\end{array}\right]$ is a multiple of $\left[\begin{array}{l}1 \\ 3\end{array}\right]$. $\left[\begin{array}{l}2 \\ 5\end{array}\right]$ is not a multiple of $\left[\begin{array}{l}1 \\ 3\end{array}\right]$

Because we had an exam last week, Quiz 4 tomorrow is on all of 3.1-3.6 (Euler's method 2.4 will not be on the quiz).

Definitions of linear independence
Definition (page 216) Vectors v_1, ... vs in $\mathrm{R} \wedge \mathrm{n}$ are linearly dependent if and only if one of them is a linear combination of the others. Otherwise the vectors are linearly independent.

Example: The vectors $(1,0,-1),(1,2,-2),(1,4,-3)$ are dependent because $\left[\begin{array}{c}1 \\ 4 \\ -3\end{array}\right]=2\left[\begin{array}{c}1 \\ 2 \\ -2\end{array}\right]-\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$

Theorem 3 on page 216: Vectors $v _1, \ldots, v _s$ are dependent if and only if there exist numbers $a_{-} 1, \ldots, a _s$, not all 0 , with $a_{-} 1 v_{-} 1$ $+\ldots+a_{-} s v _s=0$

Definition/Theorem on page 231: They are independent if and only if the only solution to a_1v_1 + $\ldots+a_{-} s v_{_} s=0$ is the zero solution $\mathrm{a} _1=\mathrm{a} _2=\ldots=\mathrm{a} _\mathrm{s}=0$.

Question: do you think the vectors $(1,0,1)$, (1, 2, -2), ($1,6,-3$) are dependent or independent?
a. dependent
b. independent
c. not sure

Another example: $(1,3),(2,6),(2,5)$ are linearly dependent, because

$$
\left[\begin{array}{l}
2 \\
6
\end{array}\right]=2\left[\begin{array}{l}
1 \\
3
\end{array}\right]+0\left[\begin{array}{l}
2 \\
5
\end{array}\right]
$$

Thus $2\left[\begin{array}{l}1 \\ 3\end{array}\right]-\left[\begin{array}{l}2 \\ 6\end{array}\right]+0\left[\begin{array}{l}2 \\ 5\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]=0$ verifies the indiction in Theorem 3.

Independent we can solire
Remember these $x\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]+y\left[\begin{array}{c}1 \\ 2 \\ -2\end{array}\right]+z\left[\begin{array}{c}1 \\ 6 \\ -3\end{array}\right]=0$ and $\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 2 & 6 \\ 1 & -1-3\end{array}\right]$ reduces to $\left[\begin{array}{lll}1 & 2 & 7 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right]$
There is a iniquesolurtion.

Question like 4.1 19-24, and like 4.3 17-22
Determine whether $(1,0,-1),(1,2,-2),(1,6,-3)$ are independent. If not, find a non-zero linear combination of them that equals zero.

$$
\begin{aligned}
& \text { Reduce } {\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 2 & 6 \\
-1 & -2 & -3
\end{array}\right] } \\
& \text { We get }\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right] \rightarrow \text { independent } \\
& {\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 1 & ? \\
0 & 0 & 0
\end{array}\right] \text { - dependent } }
\end{aligned}
$$

Question:
Are the following sets of vectors dependent or independent?

1. The set $(1,3)$ and $(2,4)$
a. dependent
b. independent
2. The set $(1,3)$ and $(2,6)$
a. dependent
b. independent

Also, what about the sets
3. $(1,2)$ and $(0,0)$? $0\left[\begin{array}{l}1 \\ 2\end{array}\right]+17\left[\begin{array}{l}0 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ so dependent.

1. $(1,3),(2,4),(3,7),(1,0)$?
are dependent b / c when we reduce.
$\left[\begin{array}{llll}1 & 2 & 3 & 1 \\ 3 & 4 & 7 & 0\end{array}\right]$ we get 2 free
varables
80 infinitely mam solutions to

$$
x\left[\begin{array}{l}
1 \\
3
\end{array}\right]+y\left[\begin{array}{l}
2 \\
4
\end{array}\right]+2\left[\begin{array}{l}
3 \\
2
\end{array}\right]+w\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text {. }
$$

Criterion for independence of n vectors in $R \wedge n$
Theorem 4 of 4.1 and Theorem 2 of 4.3 .
The n vectors $v _1, \ldots, v _n$ in $R \wedge n$ are linearly independent if and only if the $n \times n$ matrix

$$
A=\left[\begin{array}{llll}
v_{-} & 1 & v_{-} & \ldots \\
v_{-} n
\end{array}\right]
$$

has non-zero determinant.
\Leftrightarrow the main $x A$ reduces to $\left[\begin{array}{lll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Leftrightarrow A$ is invertible,
Example like 4.1 questions 15-18.
Apply Theorem 4 to determine whether the given vectors are dependent or independent.

$$
(1,0,-1),(1,2,-2),(1,6,-3)
$$

$$
\operatorname{det}\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 2 & 6 \\
-1 & -2 & -3
\end{array}\right]=\begin{aligned}
& -6-6+0 \\
& \\
& +2+12+0
\end{aligned}
$$

$$
=2 \neq O_{\text {independent. }}
$$

How about $(1,0,-1),(1,2,-2),(1,4,-3)$?

$$
\operatorname{det} A=0
$$

Theorem 1 of Sec 4.1 / Axioms for a vector space in Sec 4.2
(a) $u+v=v+u$
(b) $u+(v+w)=(u+v)+w$
(c) there is a vector 0 with $u+0=u=0+u$ always
(d) there is a vector -u with $\mathrm{u}+(-\mathrm{u})=0=(-\mathrm{u})+\mathrm{u}$ always
(e) $r(u+v)=r u+r v$
(f) $(\mathrm{r}+\mathrm{s}) \mathrm{u}=\mathrm{ru}+\mathrm{sv}$
(g) $r(s u)=(r s) u$
(h) $1(u)=u$

Examples: 1. \mathbb{R}^{n} is a rector space
2. The set of all functions $a \sin x+b \cos x+c e^{x}$ where a, b, c are numbers, is a vectaspace
3. The vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ in \mathbb{R}^{2} where $x=2 y$ is a rector space. This is a subspace of ti z

Definition (page 219 and 224)
A subset of a vector space V is called a subspace if it is a vector space in its own right with the given operations of + and scalar multiplication.

Question: which of the following are subspaces of $R \wedge 2$?
a. The set of vectors (x, y) with $x y=0$. No
b. The set of vectors (x, y) with $2 x+3 y=0$.
a. $\left[\begin{array}{l}1 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right] \begin{aligned} & \text { does not satisfying } \\ & 1.1=0\end{aligned}$ b. If $\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right],\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right]$ satisfy $2 x_{1}+3 y_{1}=0$ and $2 x_{2}+3 y_{2}=0$ then $\left[\begin{array}{l}x_{1}+x_{2} \\ y_{1}+y_{2}\end{array}\right]$ satisfies $2\left(x_{1}+x_{2}\right)+3\left(y_{1}+y_{2}\right)=0$, 50 lies in this set also c[$\left.\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]$ lies in the set.

Theorem 1 of Sec 4.2 also stated at the bottom of page 219 in Sec 4.1.

A non-empty subset W of a vector space V is a subspace of $V<=>$ it satisfies the following two conditions:
(i) If u and v are in W, then so is $u+v$. (ii) If u is in W and c is a scalar, then the vector cu is in W .
Proof " \Leftarrow " If these two conduturen hold then all the axioms follow automatically because W is a subset of a bigger rector space.

Like Sec 4.1, 29-41 and Sec 4.2, 1-14. Is the set W of vectors in some $\mathrm{R} \wedge \mathrm{n}$ a subspace?
a. W is the set of all vectors $\left(x, x^{\wedge} 2+5\right)$.
b. W is the set of all vectors with $x_{-} 1=4 \times _3$ and $x _4=5 x _2$.
c. W is the set of all vectors with $\times _1 \times _2=0$.
d. W is the set of all vectors with $x_{1}^{2}+x_{2}^{2}=1$.
a.

$$
\begin{aligned}
& {\left[\begin{array}{l}
0 \\
5
\end{array}\right] \in W \text { but }} \\
& 2\left[\begin{array}{l}
0 \\
5
\end{array}\right]=\left[\begin{array}{l}
0 \\
10
\end{array}\right] \notin W
\end{aligned}
$$

so W is not a subspace

Pre-class Warm-up!!!
Is the set W of vectors ($x _1, x _2, x _3, x _4$) for which $x _1=4 x _3$ and $x _4=5 x _2$ a subspace of $R \wedge 4$?

Yes \int No

What about the set U of vectors
($x _1, x _2$) for which

$$
x_{1}^{2}+x_{2}^{2}=1
$$

Is U a subspace of $R \wedge 2$?
Yes $\quad \operatorname{No} / 1 t$ is not always the cave that $u_{1}+u_{2} \in U$ when $u_{1} \in U, u_{2} \in \cup$ $e \cdot g \cdot u_{1}=u_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right] \cdot u_{1}+u_{2} \notin$

If x and y satisfy $x_{1}=4 x_{3}, x_{4}=5 x_{2}$ $y_{1}=4 y_{3} \quad y_{4}=5 y_{2}$ then
$x+y$ satisfies $\left(x_{1}+y_{1}\right)=4\left(x_{3}+y_{3}\right)$ and $\left(x_{4}+y_{4}\right)=5\left(x_{2}+y_{2}\right)$
If c is scalar then $c x$ satisfies $\left(e x_{1}\right)=4\left(c x_{3}\right)$ and $c x_{4}=5\left(c x_{2}\right)$

Can you remember what it means for vectors $v_{-} 1, v_{-} 2, v_{-} 3$ to be linearly independent?
a. It is possible to write every vector as a linear combination of $v _1, v_{-} 2, v_{-} 3$.
b. It is possible to write 0 as a linear combination of $v _1, v _2, v_{-} 3$.
c. There is only one way to write 0 as a linear combination of $v_{-} 1, v_{-} 2, v_{-} 3$.
d. One of them is a linear combination of the others. Dependent.

Like 4.2 questions 15-22.
Find vectors u and v so that the solution space to the system of equations is the set of all linear combinations sur +tv.

$$
\begin{aligned}
& x_{-} 1+2 x_{_} 2+3 x _3=0 \\
& 2 x_{-} 1+4 x_{-} 2+6 x_{-} 3=0
\end{aligned}
$$

solution. Put the system in mathx for

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
2 & 4 & 6 & 0
\end{array}\right] \xrightarrow{(2) \rightarrow(2)-2(1)}} \\
& {\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

x_{2} and x_{3} are free variables

$$
x_{1}=-2 x_{2}-3 x_{3}
$$

The general solution is:
$\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}-2 x_{2}-3 x_{3} \\ x_{2} \\ x_{3}\end{array}\right]=x_{2}\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]+x_{3}\left(\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right]$
= the set of all linear combinatump of $\left[\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{r}-3 \\ 0 \\ 1\end{array}\right]$
Take $u=\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right] \quad v=\left[\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right]$

Question: Show also that $0 u$ is the zero vector 0 for every vector u.
4.2 question 23.

Show that every subspace W of a vector space \vee contains the zero vector 0 .
4.2 question 27.

Let u and v be fixed vectors in V. Show that the set W of all linear combinations $a u+b v$ is a subspace of V .
Sountion. We show that whenever we take turo vectors $a_{1} u+b_{1} v, a_{2} u+b_{2} v$ then $\left(a_{1} u+b, v\right)+\left(a_{2} u+b_{2} v\right) \in W$
This is true secaure the vector equals

$$
\left(a_{1}+a_{2}\right) u+\left(b_{1}+b_{2}\right) v
$$

Also we check $c(a, 4+b, v) \in W$
True because it is $\left(c a_{1}\right) u+\left(c b_{1}\right) v$

Definition in 4.3: the span of vectors $v_{_} 1, \ldots, v_{-} k$ is the set of all linear combinations

$$
a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{k} v_{k}
$$

of these vectors.
of these vectors.
it is a subspace of V We say that $v _1, \ldots, v _k$ span W if W is the span of v_{1}, \ldots, v_{k}
Example:
Find whether the 3 vectors
$(1,0,-1),(1,2,-2),(1,6,-3)$
a. span $\mathrm{R} \wedge 3$
b. are linearly independent.

Solution.
(a) Set up a matrix and reduce to echelon form

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 2 & 6 \\
-1 & -2 & -3
\end{array}\right]
$$

We want to know whether each vector $b \in \mathbb{R}^{3}$ can be written as a line combination $x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}=b$
We solve $A x=b$
Reduce $\left[\begin{array}{cccc}1 & 1 & 1 & b_{1} \\ 0 & 2 & 6 & b_{2} \\ -1 & -2 & -3 & b_{3}\end{array}\right]$. We did these $\begin{aligned} & \text { numbersbefove. }\end{aligned}$
and gat $\left[\begin{array}{lll|l}1 & 0 & 0 & ? \\ 0 & 1 & 0 & ? \\ 0 & 0 & 1 & ?\end{array}\right]$
There is always a solution b / C we got the identity on the left. Answer a. Yes.
b.? Yes. There are no zero rows in the echelon form of A,

Some conditions for independence and spanning not quite expressed this way in the book

Theorem.
Let $v_{-} 1, \ldots, v_{-} k$ be some vectors in $R \wedge n$, and let $A=\left[v_{-} 1 v_{-} 2 \ldots v_{-} k\right]$ be the matrix with these vectors as the columns.,
a. the vectors are independent $<=>$ the echelon form of A has a leading entry in each column. This implies $\mathrm{k} \leq \mathrm{n}$.
b. the vectors span $R \wedge n<=>$ the echelon form of A has a leading entry in each row (i.e. there are no rows of zeros). This implies $k \geq n$.
c. if $\mathrm{n}=\mathrm{k}$, the vectors are independent $<=>$ they span $\mathrm{R} \wedge \mathrm{n}<=>$ the reduced echelon form is the identity matrix $<=>A$ is invertible $<=>\operatorname{det} A \neq 0$
\Leftrightarrow there arenofree vanables

$$
\left[\begin{array}{rrr}
\cdot \cdots & \ddots & \ddots \\
\cdot \cdot \cdot & \cdot
\end{array} \begin{array}{l}
4 \\
4 \text { vectors in } \mathbb{R}^{2} \Rightarrow \\
\\
\text { free variables, de }
\end{array}\right.
$$

\Leftrightarrow we can solve $A x=b$ for every b.

Question:

1. How long do you think it would take you to determine whether the following vectors are linearly independent in $R \wedge 3$?

a. <5 seconds $\sqrt{ } 4$ vectors in \mathbb{R}^{3} are always
b. between 5 and 20 seconds dependent.
c. between 20 seconds and a minute
d. between 1 and 5 minutes
e. can't do it at all
2. How long do you think it would take you to determine whether they span $\mathrm{R} \wedge 3$?
Reduce toechelan form, c?

Question: True or False, for vectors $v_{-} 1, \ldots, v _6$ in $R \wedge n$?
a. If $v_{-} 1, \ldots, v_{-} 6$ are linearly independent then $v _1, \ldots, v_{-} 4$ are necessarily linearly independent.
b. If $v _1, \ldots, v _4$ are lin. index. then v_1, ... $v _6$ are necessarily lin. indef.
c. b. If $v_{-} 1, \ldots, v_{-} 6$ span $R \wedge n$ then v_1, ... v_4 necessarily span $R \wedge n$.
d. b. If $v _1, \ldots, v _4$ span $R \wedge n$ then v_1, ..., v_6 necessarily span $R \wedge n$.

True False

